Skip to content

RSA Decryption Guide

Prime factors: p = 13, q = 83

Totient φ(n) = 984

Private exponent d = 595

Verification:

✓ p × q = 13 × 83 = 1079 = n ✓
✓ φ(n) = (13 - 1) × (83 - 1) = 984
✓ d × e mod φ(n) = 595 × 43 mod 984 = 1 ≡ 1 ✓

Decryption:

Decrypted values: 83 75 89 45 75 82 89 71 45 53 53 51 48
Plaintext: SKY-KRYG-5530

Current values:

  • Modulus: 1079
  • Public exponent: 43
  • Cipher text: 996 894 379 631 894 82 379 852 631 677 677 194 893

Find prime factors and where:

n=??n = ? * ?

Calculate :

ϕ(n)=(?1)(?1)=?\phi(n) = (? - 1) * (? - 1) = ?

Find such that:

d431(mod?)d * 43 ≡ 1 (mod ?)
d=?d = ?

Verify that:

?×?=1079? × ? = 1079
φ(n)=(?1)×(?1)=?φ(n) = (? - 1) × (? - 1) = ?
?×431mod?? × 43 ≡ 1 \mod ?

Finally, input the following values into an RSA decryption tool:

  • n = 1079
  • e = 43
  • d = ?

Click “Decrypt” to obtain the plaintext message.